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In this paper we give the full microscopic derivation of the model Hamiltonian for the three-dimensional
topological insulators in the Bi2Se3 family of materials �Bi2Se3, Bi2Te3 and Sb2Te3�. We first give a physical
picture to understand the electronic structure by analyzing atomic orbitals and applying symmetry principles.
Subsequently, we give the full microscopic derivation of the model Hamiltonian introduced by Zhang et al.
�Nat. Phys. 5, 438 �2009�� based both on symmetry principles and the k ·p perturbation theory. Two different
types of k3 terms, which break the in-plane full rotation symmetry down to threefold rotation symmetry, are
taken into account. An effective Hamiltonian is derived for the topological surface states. Both bulk and
surface models are investigated in the presence of an external magnetic field, and the associated Landau level
structure is presented. For a more quantitative fitting to the first principle calculations, we also present a model
Hamiltonian including eight energy bands.
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I. INTRODUCTION

Recently, topological insulators �TIs� have been investi-
gated intensively both theoretically and experimentally.2–4

These insulators are fully gapped in the bulk but have gap-
less edge or surface states which are topologically protected
by the time reversal symmetry. The topological insulator was
first theoretically predicted5 and experimentally observed6 in
HgTe quantum wells. Transport measurements6,7 show the
existence of gapless edge channels, which demonstrates that
the HgTe /CdTe quantum well is a two-dimensional �2D� TI
with a quantum spin Hall effect. Later, BixSb1−x was sug-
gested to be a three-dimensional �3D� TI �Ref. 8� with topo-
logically nontrivial surface states, which were observed by
angle-resolved photoemission spectroscopy �ARPES�.9 How-
ever, BixSb1−x has a small energy gap, is subjected to alloy
disorder and possesses rather complicated surface states.
More recently, TIs with large bulk gaps of �0.3 eV and
single Dirac cone surface states have been theoretically pre-
dicted for Bi2Te3,1 Sb2Te3

1 and Bi2Se3.1,10 ARPES
measurements10,11 indeed show a single Dirac cone with lin-
ear dispersion around the � point in both Bi2Se3 and Bi2Te3.
Current research on these materials is developing
rapidly.12–30

For a deeper understanding and quantitative predictions of
the phenomena associated with the TIs, it is highly desirable
to construct standard models for both 2D and 3D TIs.
Bernevig, Hughes and Zhang �BHZ� �Ref. 5� constructed a
model Hamiltonian for the 2D TI in HgTe quantum wells.
This model Hamiltonian demonstrates the basic mechanism
of TI behavior through band inversion induced by spin-orbit
coupling �SOC�. It has been applied successfully for quanti-
tative predictions of the helical edge states and properties
under magnetic fields.31 Zhang et al.1 derived a model
Hamiltonian for the 3D TI Bi2Se3, Bi2Te3, and Sb2Te3 and
obtained topological surface states consisting of a single
Dirac cone. Interestingly, in the thin film limit, the 3D TI

model reduces exactly to the 2D TI model by BHZ.32–34 In
this paper, we give the full microscopic derivation of our
model Hamiltonian, first by constraining its form by symme-
try principles and a careful analysis of the relevant atomic
orbitals. Subsequently, we determine the parameters of our
model Hamiltonian by a systematic k ·p expansion near the
� point and comparison with the ab initio calculations.1 Fur-
thermore the higher order k3 terms neglected in Ref. 1 are
also included in the derivation in order to recover the crystal
C3 rotation symmetry.35 Compared to the symmetry argu-
ments given in Ref. 1, the derivation given in this paper
determines all the parameters of our model Hamiltonian by
the wave functions from ab initio calculations so that no
fitting is required and no ambiguity is introduced. As an ap-
plication of our model Hamiltonian, we study the bulk and
surface Landau level spectra in a magnetic field. The surface
Landau levels have a �B field dependence, as is expected
from the Dirac-type dispersion of the surface states. The gap
between zeroth and first Landau levels can be as large as
50 meV for a 10 T magnetic field, which suggests that the
topological magnetoelectric effect36,37 can be observable at
such energy scales. Furthermore, we propose a more quanti-
tative description of the Bi2Se3 family of TIs by going be-
yond four bands and present a model Hamiltonian with eight
bands. Recently, our model Hamiltonian has been applied
successfully to understand a number of experiments, includ-
ing the scanning tunneling microscopy �STM� study of the
topological surface states,14,20 STM study of the surface
bound states,30 STM study of the quasiparticle
interference,14,20,38 the crossover from 3D to 2D topological
insulators,21,32–34 and the Landau levels of the topological
surface states.22,23

The paper is organized as follows. In Sec. II we first
present the lattice structure and the symmetry properties of
the Bi2Se3 crystal. Then we turn to the electronic band struc-
ture and discuss the atomic orbital picture, which is helpful
to capture the essential physics in the long wave length limit.
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Keeping this atomic orbital picture in mind, we investigate in
detail the properties of the bands near the Fermi surface
based on the symmetry argument in Sec. III. Furthermore,
our model Hamiltonian for the conduction and valence bands
is derived from the theory of invariants. In Sec. IV, we red-
erive our model Hamiltonian from the k ·p theory and deter-
mine its parameters by more fundamental matrix elements of
the momentum operator in the k ·p theory. As an application
of our model Hamiltonian, the surface state Hamiltonian and
the Landau levels for both bulk and surface states are calcu-
lated in Sec. V and Sec. VI, respectively. In Sec. VII, the
quantitative limitation of our model Hamiltonian with four-
bands is discussed and a model Hamiltonian is proposed to
describe the Bi2Se3 type of materials more quantitatively. In
Sec. VIII we provide a brief discussion and conclusion.

II. CRYSTAL STRUCTURE, ATOMIC ORBITALS, AND
SYMMETRY

In this section we will describe the crystal structure of the
Bi2Se3 family of materials and discuss the relevant atomic
orbitals and the discrete symmetries. A large portion of the
content of this section is already discussed in Ref. 1, but we
feel that it is helpful to present the more complete version of
this discussion here to make this paper self-contained. The
crystal structure of Bi2Se3 is rhombohedral with the space

group D3d
5 �R3̄m�. As shown in Fig. 1�a�, the crystal has a

layered structure stacked along z direction with five atoms
�two Bi atoms and three Se atoms� in one unit cell, including
two equivalent Se atoms �Se1 and Se1��, two equivalent Bi
atoms �Bi1 and Bi1��, and one Se atom �Se2� which is in-
equivalent to the Se1 and Se1� atoms. Therefore five atomic

layers can be viewed as one unit, which is usually called a
quintuple layer. Each atomic layer forms a triangle lattice,
which has three possible positions, denoted as A, B and C, as
shown in Fig. 1�c�. Along the z direction, the triangle layers
are stacked in the order A-B-C-A-B-C-¯. We note that the
primitive lattice vector ti �i=1,2 ,3� is not directed along the
z direction. For example, in one quintuple layer, the Se2
atoms occupy the A sites; in the next quintuple layer, the Se2
atoms do not occupy the A sites but rather the C or B sites.
Our coordinate is set as the following: the origin is set at the
Se2 site; the z direction is set perpendicular to the atomic
layer, the x direction is taken along the binary axis with the
twofold rotation symmetry, and the y direction is taken along
the bisectrix axis, which is the crossing line of the reflection
plane and the Se2 atomic layer plane. The Brillouin zone
�BZ� of this lattice structure is shown in Fig. 1�b�. This crys-
tal structure has the following discrete symmetries:

�1� Threefold rotation R3 along the z direction. R3 can be
generated by the following transformation: x→x cos �
−y sin �, y→x sin �+y cos �, and z→z, where �= 2�

3 .
�2� Twofold rotation R2 along the x direction. R2 corre-

sponds to the following transformation: Se2→Se2, Bi1
→Bi1�, and Se1→Se1�; z→−z, x→x, and y→−y. For this
symmetry operation, we find that Bi1 �Se1� and Bi1� �Se1��
layers interchange their positions.

�3� Inversion P. P: Se2→Se2, Bi1→Bi1�, and Se1
→Se1�; z→−z, x→−x, and y→−y. The Se2 site is the in-
version center of this lattice structure; hence we set Se2 as
the origin point. Under inversion operation, Bi1 �Se1� is
changed to Bi1� �Se1��.

�4� Time reversal T. Time reversal operation is given by
T=�K, where �= i�2 and K is the complex conjugate op-
erator. Here �1,2,3 are the Pauli matrice for spin.

In order to get a physical picture of the band structure of
Bi2Se3, we start from the atomic orbitals of Bi and Se. The
electron configuration of Bi is 6s26p3 and that of Se is
4s24p4. The outmost shells for both Bi and Se are p orbitals;
therefore it is natural to consider only the p orbitals of Bi and
Se and neglect other orbitals. As discussed above, Bi2Se3 has
a layered structure. The chemical bonding is very strong
within one quintuple layer but the two neighboring quintuple
layers are only coupled by the van der Waals force. There-
fore it is reasonable for us to first focus on one quintuple
layer. Within one quintuple layer there are five atoms in one
unit cell and each atom has three orbitals �px, py, and pz�;
therefore in total there are 15 orbitals. The spin is neglected
first and will be discussed later when we introduce SOC into
the system. We denote these orbitals as �� ,	� with �=Bi1,
Bi1�, Se1, Se2, and Se1� and 	= px, py, and pz. As shown in
Fig. 1�a�, the Se2 atomic layer stays in the middle of the
quintuple layer and is sandwiched by two Bi layers �Bi1 and
Bi1��, while two Se layers �Se1 and Se1�� are located at the
outermost. Since all the Se layers are separated by Bi layers,
the strongest coupling in this system is the coupling between
Bi layers and Se layers. Such coupling causes level repul-
sion, so that the Bi energy levels are pushed up and form
new hybridized states �B	� and �B	�� while the Se energy lev-
els are pushed down and yield three states �S	�, �S	��, and
�S0	�, as shown in Fig. 2�I�. Since the system has inversion
symmetry, it is convenient to combine these orbitals to form
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FIG. 1. �Color online� �a� The crystal structure of Bi2Se3. t�1,2,3 is
the primitive lattice vector, given by t�1= ��3a /3,0 ,c /3�, t�2

= �−�3a /6,a /2,c /3�, and t�3= �−�3a /6,−a /2,c /3�, where a is the
lattice constant in the x-y plane and c is the lattice constant along
the z direction. The quintuple layer is shown in the red box with
Se1-Bi1-Se2-Bi1�-Se1�. Se1 Bi1 and Se1� �Bi1�� are equivalent.
�b� Brillioun zone of Bi2Se3. �c� The in-plane triangle lattice has
three possible positions A, B and C.
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the bonding and anti-bonding states with the definite parity,
which are given by

�P1
,	� =
1
�2

��B	� � �B	��� ,

�P2
,	� =
1
�2

��S	� � �S	��� , �1�

with the upper index denoting the parity and 	= px , py , pz.
When the coupling between �B	�S	�� and �B	��S	��� is taken
into account, the bonding and antibonding states are split,
with the antibonding state having higher energy than the
bonding state. Therefore as shown in Fig. 2�II�, the states
�P1+,	� and �P2−,	� are found to be near the Fermi surface;
hence we focus on �P1+,	� and �P2−,	� �	= px , py , pz� and
neglect the other states. Furthermore the crystal has a layered
structure, so the z direction is different from the x or y direc-
tions in the atomic plane. Thus there is an energy splitting
between pz and px,y orbitals for both P1+ and P2− states. We
find that �P1+, px,y� orbitals have higher energy than
�P1+, pz�, while �P2−, px,y� orbitals have lower energy than
�P2−, pz�. Consequently, the conduction band mainly consists
of �P1+, pz� while the valence band is dominated by the
�P2−, pz� orbital before SOC is considered, as shown in Fig.
2�III�.

Next we include SOC effect in the above atomic picture.
The states �P1+,	 ,�� and �P2−,	 ,�� are all doubly degen-
erate, with one more index �= ↑ ,↓ to denote spin. The

atomic SOC Hamiltonian is given by Ĥso=�s ·L with �

= 1
2m0

2c2
1
r

�U
�r depending on the detailed potential U of atoms,

which couples orbital angular momentum to spin. It is con-
venient to transform the px and py orbitals to p
 with definite
orbital angular momentum

��,p+,�� = −
1
�2

���,px,�� + i��,py,��� , �2�

��,p−,�� =
1
�2

���,px,�� − i��,py,��� , �3�

where �= P1+, P2−. Within this basis, the atomic SOC
Hamiltonian is given by

	�,p+,↑
Hso��,p+,↑� = 	�,p−,↓
Hso��,p−,↓� �
��

2
,

	�,p+,↓
Hso��,p+,↓� = 	�,p−,↑
Hso��,p−,↑� � −
��

2
,

	�,p+,↓
Hso��,pz,↑� = 	�,p−,↑
Hso��,pz,↓� �
��

�2
,

��,pz,↑�↓��Hso��,pz,↑�↓�� = 0. �4�

Here the value of �� is a linear combination of the SOC
coefficient for Bi and Se, depending on how much the orbit-
als of Bi and Se are mixed into the state ���. The sign of ��

is always positive for �= P1+, P2− since the potential is al-
ways attractive for atoms. As we see, since the total angular
momentum along the z direction is still conserved, hybrid-
ization only occurs between �� , pz , ↑ ���� , pz , ↓ �� and
�� , p+ , ↓ ���� , p− , ↑ ��. After taking into account SOC, the
new eigenstates are given by


�,
3

2
 = ��,p+,↑� , �5�


�,−
3

2
 = ��,p−,↓� , �6�


�+,
1

2
 = u+

���,pz,↑� + v+
���,p+,↓� , �7�


�−,
1

2
 = u−

���,pz,↑� + v−
���,p+,↓� , �8�


�+,−
1

2
 = �u+

��*��,pz,↓� + �v+
��*��,p−,↑� , �9�


�−,−
1

2
 = �u−

��*��,pz,↓� + �v−
��*��,p−,↑� , �10�

with the eigenenergies E3/2
� and E1/2

�
 �each is doubly degen-
erate� and u and v obtained by solving the following 22
Hamiltonian,

Ĥ = �E�,x − ��/2 ��/�2

��/�2 E�,z
� . �11�

For the above eigenstates �5�–�10�, all the information about
SOC is included in the coefficients u and v, which are given
by

Bi

Se

(I) (II) (III) (IV)

FIG. 2. �Color online� Schematic picture of the origin of the
band structure of Bi2Se3. Starting from the atomic orbitals of Bi and
Se, the following four steps are required to understand the band
structure: �I� the hybridization of Bi orbitals and Se orbitals, �II� the
formation of the bonding and antibonding states due to the inver-
sion symmetry, �III� the crystal field splitting, and �IV� the influence
of the SOC.
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�u

�

v

� � =

1

N
��E� 
���E��2 +
��

2

2

��/�2
� �12�

explicitly, where N
=��
2 +2�E�

2 
2�E�
��E�

2 +��
2 /2 and

�E�=
E�,x−E�,z−��/2

2 . The energy splitting between the px�y� or-
bital and the pz orbital due to the crystal field is larger than
the energy scale of SOC and �E� is dominated by E�,x
−E�,z. Now as we see, the SOC couples �� , pz , ↑ ���� , pz , ↓ ��
to �� , p+ , ↓ ���� , p− , ↑ �� so that it induces a level repulsion
between these two states. Consequently, �P1−

+ , 

1
2 � is pushed

down while �P2+
− , 


1
2 � is pushed up, which yields a level

crossing between these two pairs of states, when the SOC is
strong enough, as shown in Fig. 2�IV�. Since these two pairs
of states have opposite parity, their crossing leads to a band
inversion, similar to the case of the HgTe quantum wells.5

This is the key signature of the topological insulator phase in
the Bi2Se3 family of materials.1 Therefore in the following
we will focus on these four states and regard the other states
as a perturbation.

III. MODEL HAMILTONIAN DERIVED FROM
SYMMETRY PRINCIPLES

From the discussion of the atomic orbitals in the last sec-
tion, we obtain an intuitive physical picture of the band
structure of Bi2Se3. Compared with the ab initio calculation,
we can denote the bands near the Fermi surface by ��
 ,	�

where �= P1
 , P2
 and 	= 

1
2 , 


3
2 , as shown in Fig 3.

Roughly, these states mainly consist of the bonding or anti-
bonding states of the p orbitals of Bi or Se atoms. However,
other orbitals such as the s orbitals of Bi and Se will also mix
into these states. To identify each band without any ambigu-
ity, it is necessary to relate each band with the representation
of the crystal symmetry. At � point, each state should belong
to an irreducible representation of the crystal symmetry
group and the hybridization between orbitals preserve the
symmetry properties. Therefore, a suitable method to iden-
tify each band is to use the symmetry of the crystal. In this
section, we will first identify each band according to the
irreducible representation of the crystal group D3d

5 and then
try to derive our model Hamiltonian just from symmetry
principles.

First let us consider the states without spin, which are
denoted as ��
 ,	� with �= P1, P2 and 	= px , py , pz. The
crystal of Bi2Se3 belongs to the group D3d

5 with the character
table given in Table I �Appendix A�.39 Since the crystal is
inversion symmetric, each representation has a definite parity
eigenvalue. For each parity, there are two one-dimensional

representations �̃1

 and �̃2


 and one two-dimensional repre-

sentation �̃3

, where the upper index denotes the parity ��

for even and � for odd�. According to the wave functions
constructed from the simple atomic orbital picture, we can
determine the transformation property of the wave functions
under the generators R3, R2, and P of the point group. For
example, let us look at the operation R2 on the state
�P1+, px�= 1

�2
��Bx�− �Bx���. The R2 rotation does not change the

px orbital; however it changes the position of Bi1 �Se1� and
Bi1� �Se1�� and correspondingly changes �B� to �B��; thus we
should have R2�P1+, px�=−�P1+, px�. A similar argument can
be applied to other states and finally the transformation of
the states under the crystal symmetry operations is listed as
follows.

�1� Threefold rotation R3: ��
 , px�→cos ���
 , px�
−sin ���
 , py�, ��
 , py�→sin ���
 , px�+cos ���
 , py�, and
��
 , pz�→ ��
 , pz�, with �= 2�

3 .
�2� Twofold rotation R2: ��
 , px�→ � ��
 , px�, ��
 , py�

→ 
 ��
 , py�, and ��
 , pz�→ 
 ��
 , pz�.
�3� Inversion P: ��
 ,	�→ 
 ��
 ,	�, 	= px , py , pz.
Here �= P1
 , P2
. According to the above transforma-

tion, we find that ��+�−� , px� and ��+�−� , py� belong to the �̃3
+�−�

representation. ��+ , pz� belongs to the �̃1
+ representation and

��− , pz� belongs to the �̃2
− representation.

TABLE I. The character table for D3d
5 �R3̄m�.

D3d�3̄m� E 2R3 3R2 P 2PR3 3PR2

�̃1
+ 1 1 1 1 1 1

�̃2
+ 1 1 −1 1 1 −1

�̃3
+ 2 −1 0 2 −1 0

�̃1
− 1 1 1 −1 −1 −1

�̃2
− 1 1 −1 −1 −1 1

�̃3
− 2 −1 0 −2 1 0

FIG. 3. The band structure of Bi2Se3 is obtained from ab initio
calculation, and the bands near Fermi surface are identified with
��
 ,	�. �= P1
 , P2
 and 	= 


1
2 , 


3
2 . The corresponding irre-

ducible representation is also given.
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To take into account spin, we introduce the spinor repre-

sentation �̃6
+, which changes its sign under the rotation C

=2�. The double group of D3d
5 can be constructed by the

direct product of �̃1,2,3

 and �̃6

+. As shown in Eqs. �A1�–�A3�,
we find that �̃3



� �̃6

+ will give two new one-dimensional rep-

resentations �̃4

 and �̃5


, which are conjugate to each other.
The character table of the double group for D3d

5 is given in
Table II �Appendix A�.39 With SOC, the eigenstates in Eqs.
�5�–�10� can also be analyzed by the decomposition of direct

products. From Eqs. �A2� and �A3�, the direct product of �̃6



and �̃1,2

 always gives the �̃6


 representation; therefore

��+ , 

1
2 � with �= P1, P2 should belong to the �̃6

+ represen-

tation while ��− , 

1
2 � should belong to the �̃6

− representa-
tion. The states ��
 , 
3 /2� originate from the combination
of �� , px,y� and spin. According to Eq. �A1�, it is expected

that ��
 , 
3 /2� should be a combination of �̃4

 and �̃5




representations. Indeed by carefully inspecting the transfor-
mation behavior under the operations R2 and R3, we find that

��
,�̃4� =
1
�2

���
,3/2� + ��
,− 3/2�� �13�

belongs to the �̃4

 representation, while

��
,�̃5� =
1
�2

���
,3/2� − ��
,− 3/2�� �14�

belongs to the �̃5

 representation. The above results can also

be worked out by considering the forms of the transforma-
tion for the states �5�–�10�, which are given by

�1� Threefold rotation R3: �� , 

1
2 �→e
i�/3�� , 


1
2 � and

�� , 

3
2 �→−�� , 


3
2 �, where �= P1



 , P2


.

�2� Twofold rotation R2: ��+ , 

1
2 �→ i��+ , �

1
2 �,

��− , 

1
2 �→−i��− , �

1
2 �, ��+ , 


3
2 �→ i��+ , �

3
2 �, and

��− , 

3
2 �→−i��− , �

3
2 �, with �= P1
 , P2
.

�3� Inversion P: ��
 ,	�→ 
 ��
 ,	�, with �= P1
 , P2


and 	= 

3
2 , 


1
2 .

It is instructive to compare the present case with the more
common semiconductor crystal structures, such as diamond
or zinc-blende structure. In that case, the coupling between p

orbitals and the spin usually gives the four-dimensional �̃8

and the two-dimensional �̃7 representations. In the present
case, due to the lower symmetry of the crystal structure, the

�̃7 representation is the same as the �̃6 representation while

the �̃8 representation is reduced to two one-dimensional rep-

resentations �̃4 and �̃5 and one two-dimensional representa-

tion �̃6. In Fig. 3, the representation of the bands near the
Fermi surface is given.

Next we derive our model Hamiltonian to describe the
low energy physics of Bi2Se3 just based on the symmetry of
the wave functions at � point. As described above, near the
Fermi surface the conduction and valence band are deter-
mined by the four states �P1−

+ , 

1
2 � and �P2+

− , 

1
2 �, belong-

ing to the �̃6
+ and �̃6

− representations. Therefore the minimum
model Hamiltonian for Bi2Se3 should be written with these
four states as the basis. Generally, any 44 Hamiltonian can
be expanded with Dirac � matrices as

Ĥef f = ��k�I + �
i

di�k��i + �
ij

dij�k��ij , �15�

where I is the 44 identity matrix, �i�i=1¯5� denote the
five Dirac � matrices satisfying ��i ,� j�=2�ij, and the ten
commutators of � matrices are given by �ij = ��i ,� j� /2i.
��k�, di�k�, and dij�k� can be expanded in the powers of the
momentum k. The construction of � is given in Appendix B.
Now let us assume that the above Hamiltonian is written in
the basis �P1−

+ , 1
2 �, �P2+

− , 1
2 �, �P1−

+ ,− 1
2 �, and �P2+

− ,− 1
2 �. Then

according to the transformation of the states under the sym-
metry operation discussed above, we can construct the trans-
formation matrices as follows.

TABLE II. The character table for the double group of D3d
5 �R3̄m�.

D3d�3̄m� E 2R3 3R2 P 2PR3 3PR2 C 2CR3 3CR2 CP 2CPR3 3CPR2

�̃1
+ 1 1 1 1 1 1 1 1 1 1 1 1

�̃2
+ 1 1 −1 1 1 −1 1 1 −1 1 1 −1

�̃3
+ 2 −1 0 2 −1 0 2 −1 0 2 −1 0

�̃4
+ 1 −1 i 1 −1 i −1 1 −i −1 1 −i

�̃5
+ 1 −1 −i 1 −1 −i −1 1 i −1 1 i

�6
+ 2 1 0 2 1 0 −2 −1 0 −2 −1 0

�̃1
− 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1

�̃2
− 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1

�3
− 2 −1 0 −2 1 0 2 −1 0 −2 1 0

�̃4
− 1 −1 i −1 1 −i −1 1 −i 1 −1 i

�5
− 1 −1 −i −1 1 i −1 1 i 1 −1 −i

�̃6
− 2 1 0 −2 −1 0 −2 −1 0 2 1 0
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�1� Time reversal: T=�K, where �= i�2 � 1 and K is the
complex conjugate operator.

�2� Threefold rotation: R3=ei��/2�� with �=�3 � 1 and �
=2� /3.

�3� Twofold rotation: R2= i�1 � �3.
�4� Inversion: P=1 � �3.
In the above, � acts in the spin basis and � acts in the

basis of P1+ and P2− subbands. According to the above
transformation matrices, we can obtain the irreducible repre-
sentation of each � matrix, details of which are derived in
Appendix B. The invariance of the Hamiltonian requires that
the function di�k� �dij�k�� should have the same behavior to
the corresponding �i��ij� matrix under the symmetry opera-
tion, which means that they should belong to the same rep-
resentation of the crystal point group. In Table III Appendix
B, we list the representation for both the � matrices and the
polynomials of k, and also their transformation properties
under time reversal. Since we hope to preserve both time
reversal symmetry and crystal symmetry, we must choose the
� matrices and polynomials of k with the same representa-

tion. For example, �1 and �2 carry the representation �̃3
− and

are odd under time reversal and so are kx and ky. Therefore
they can together form an invariant term for the Hamiltonian.
Finally, up to O�k3�, our model Hamiltonian yields

Hef f� = H0� + H3�,

H0� = �k + M�k��5 + B�kz��4kz + A�k����1ky − �2kx� ,

�16�

H3� = R1�3�kx
3 − 3kxky

2� + R2�4�3kx
2ky − ky

3� , �17�

where �k=C0+C1kz
2+C2k�

2, and M�k�=M0+M1kz
2+M2k�

2

and A�k��=A0+A2k�
2 and B�kz�=B0+B2kz

2 and k�
2=kx

2+ky
2. H0�

preserves the in-plane rotation symmetry along the z direc-
tion, while H3� breaks the in-plane rotation symmetry down
to threefold rotation symmetry. In the following, we find that
the bulk H3� term will also lead to a correction to the effective
surface Hamiltonian, which has been studied in Ref. 35.

The above Hamiltonian is the same as that presented by
Zhang et al.,1 which can be shown by performing the trans-
formation

U1 =�
1 0 0 0

0 − i 0 0

0 0 1 0

0 0 0 i
� , �18�

and the Hamiltonian is transformed into

Hef f = H0 + H3,

H0 = U1H0�U1
† = �k

+ �
M�k� B�kz�kz 0 A�k��k−

B�kz�kz − M�k� A�k��k− 0

0 A�k��k+ M�k� − B�kz�kz

A�k��k+ 0 − B�kz�kz − M�k�
�

�19�

H3 = U1H3�U1
† =

R1�k+
3 + k−

3�
2 �

0 i 0 0

− i 0 0 0

0 0 0 i

0 0 − i 0
�

+
R2�k+

3 − k−
3�

2 �
0 − i 0 0

− i 0 0 0

0 0 0 i

0 0 i 0
� . �20�

Now we can see that H0 is nearly the same as the model
Hamiltonian �1� in Ref. 1, except the A2 term and B2 term,
which represent the high order correction to the Fermi veloc-
ity A0 and B0. Since this correction is not important near the
� point, we will neglect these two terms in the following.
Derivation of our model Hamiltonians �19� and �20� from the
symmetry principles is the central result of this section.

IV. MODEL HAMILTONIAN DERIVED FROM THE k·p
PERTURBATION THEORY

Up to now we have obtained our model Hamiltonian from
symmetry principles, or the theory of invariants.10 In this

TABLE III. The character table of � matrices and the polyno-
mials of the momentum k.

Representation T

��1 ,�2� �̃3
− �

�3 �̃1
− �

�4 �̃2
− �

�5 �̃1
+ �

�12 �̃2
+ �

��23,�31� �̃3
+ �

��14,�24� �̃3
+ �

��15,�25� �̃3
− �

�34 �̃2
+ �

�35 �̃1
− �

�45 �̃2
− �

�kx ,ky� �̃3
− �

kz ,kz
3

�̃2
− �

1,kx
2+ky

2 ,kz
2

�̃1
+ �

�kx
2−ky

2 ,2kxky� �̃3
+ �

kx
3−3kxky

2
�̃1

− �

3kx
2ky −ky

3
�̃2

− �

�kx
3+kxky

2 ,kx
2ky +ky

3� �̃3
− �

�Bx ,By� �̃3
+ �

Bz �̃2
+ �
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section, we will derive the model Hamiltonian in another
way, k ·p theory, and connect the parameters of the model
Hamiltonian to the more fundamental matrix elements of
momentum in k ·p theory.

The basic idea of k ·p theory is to use the wave function
at the � point in the BZ as the zeroth-order wave function
and treat

Ĥ� =
�

m0
k · p �21�

as a perturbation, where p=−i��r is the momentum operator
acting on the zeroth-order wave function and the crystal mo-
mentum k is regarded as a small parameter for the perturba-
tion procedure. The model Hamiltonian is expanded in the
powers of k. With the perturbation formalism �C18�–�C21�,
we can project the full Hamiltonian into the subspace
spanned by the four states �P1−

+ ,1 /2���1�, �P2+
− ,1 /2���2�,

�P1−
+ ,−1 /2���3�, and �P2+

− ,−1 /2���4�, which are used as
the basis of our model Hamiltonian. All the other states are
treated in the perturbation procedure and the details are given
in Appendix C. The obtained model Hamiltonian will depend
on a series of matrix elements of momentum ��1 ,	�p��2 ,��,
which can be simplified due to the symmetry of the crystal.
For example, due to inversion symmetry, all the states at the
� point have definite parity eigenvalues. Since the momen-
tum p has odd parity, the matrix elements of momentum
between two states with the same parity always vanish. The
wave function at the � point can be obtained through ab
initio calculations; consequently all these matrix elements
can be calculated. With these matrix elements, we apply the
perturbation formalism �C18�–�C21� to the system and re-
cover our model Hamiltonians �19� and �20�. The parameters
of our model Hamiltonian C0, C1, C2, M0, M1, M2, A0, B0,
R1, and R2 can be expressed as the function of the parameters
P�1,�2

, Q�1,�2
, M�1,�2

, N�1,�2
, R�1,�2

, and S�1,�2
through

Eqs. �C22�–�C31� in Appendix C. With these expressions, we
can numerically calculate the values of the parameters of our
model Hamiltonian, which is listed in Table IV. We note that
the parameters given here are different from those in Refs. 1
and 41 where the parameters are determined by fitting to the
energy dispersion, which has some ambiguity. In the present
method, since we directly calculate the matrix elements of
momentum from microscopic wave functions, there is no
ambiguity.

The key result of this section are the parameters of our
model Hamiltonian, given in Table IV. The fitted energy dis-
persions for Bi2Se3, Bi2Te3, and Sb2Te3 are plotted in Fig 4.
It is shown that our model Hamiltonian is valid in the regime
kx,z�0.04 Å−1. However the maximum of the valence band
for Bi2Se3 and Bi2Te3 stays away from the � point, at about
kx�0.07 Å−1; therefore we need to keep in mind that there
may be some discrepancies when we try to use our model
Hamiltonian to describe Bi2Se3 quantitatively. Since our
model Hamiltonian with four bands already captures the sa-
lient features of the band dispersion, especially the inverted
band structure, in the following two sections, we still stay in
the framework of our model Hamiltonian to discuss the to-
pological surface states and the Landau levels in the mag-

netic field. Then in the last section, we will extend our model
Hamiltonian to include eight bands, in order to describe
these materials more quantitatively.

V. SURFACE STATES

An important physical consequence of the nontrivial to-
pology is the existence of topological surface states. In this
section, we would like to study the surface state and its ef-
fective Hamiltonian based on our model Hamiltonian derived
above with open boundary conditions.

Consider our model Hamiltonian �17� defined on the half
space given by z�0. We can divide our model Hamiltonian
into two parts

Ĥ = H̃0 + H̃1, �22�

H̃0 = �̃�kz� + M̃�kz��5 + B0�4kz, �23�

H̃1 = C2k�
2 + M2k�

2�5 + A0��1ky − �2kx� + H3. �24�

where �̃�kz�=C0+C1kz
2 and M̃�kz�=M0+M1kz

2. All kz depen-

dent terms are included in H̃0. We replace kz by −i�z and
obtain the eigenvalue equation

H̃0�kz → − i�z���z� = E��z� . �25�

Since �4=1 � �2 and �5=1 � �3 are both block diagonal, the

Hamiltonian H̃0 is also block diagonal and the eigenstates
have the form

�↑�z� = ��0

0
�, �↓�z� = � 0

�0
� , �26�

where 0 is a two-component zero vector. �↑�z� is related to
�↓�z� by time-reversal operation. To obtain the surface
states, the wave function �0�z� should be localized at the
surface and satisfies the eigenequation

TABLE IV. The summary of the parameters in our model
Hamiltonian with four bands.

Bi2Se3 Bi2Te3 Sb2Te3

A0 �eV Å� 3.33 2.87 3.40

B0 �eV Å� 2.26 0.30 0.84

C0 �eV� −0.0083 −0.18 0.001

C1 �eV Å2� 5.74 6.55 −12.39

C2 �eV Å2� 30.4 49.68 −10.78

M0 �eV� −0.28 −0.30 −0.22

M1 �eV Å2� 6.86 2.79 19.64

M2 �eV Å2� 44.5 57.38 48.51

R1 �eV Å3� 50.6 45.02 103.20

R2 �eV Å3� −113.3 −89.37 −244.67

g1z −25.4 −50.34 −14.45

g1p −4.12 −2.67 −2.43

g2z 4.10 6.88 14.32

g2p 4.80 3.43 16.55
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„�̃�− i�z� + M̃�− i�z��3 − iB0�2�z…�0�z� = E�0�z� , �27�

which has been solved analytically for an open boundary
condition with different methods.31,32,34,41,42 Here in order to
show the existence of the surface states and to find the region
where the surface states exist, we would like to briefly re-
view the derivation for the explicit form of the surface states
by neglecting �̃ for simplicity.31

After neglecting the �̃ term, the eigenequation �27� exhib-
its the particle hole symmetry; therefore we expect that spe-
cial surface states with E=0 can exist. With the wave func-
tion ansatz �0=�e�z, the above equation can be simplified as

�M0 − M1�2��1� = B0�� . �28�

It is obvious that the two-component wave function � should
be the eigenstate of the Pauli matrix �1. Let us define �1�


= 
�
, then Eq. �28� is simplified to a quadratic equation
for �. Another important observation is that if � is a solution

for �+, then −� is a solution for �−. Consequently, the ge-
neric wave function is given by

�0�z� = �ae�1z + be�2z��+ + �ce−�1z + de−�2z��−, �29�

where �1,2 satisfy

�1,2 =
1

2M1
�− B0 
 �4M0M1 + B0

2� . �30�

Similar to Ref. 31, the open boundary condition ��0�=0,
together with the normalizability of the wave function in the
region z�0, leads to the existence condition of the surface
states, R�1,2�0 �c=d=0� or R�1,2�0 �a=b=0�, which can
only be satisfied with the band inversion condition M0M1
�0. Furthermore, it is easy to show that when B0 /M1�0,
R�1,2�0, while B0 /M1�0, R�1,2�0, thus the wave func-
tion for the surface states at � point is given by
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FIG. 4. �Color online� The en-
ergy dispersion obtained from our
model Hamiltonian with four
bands �solid line� is compared
with that from ab initio calculation
�dashed line�. Here �a� and �b� is
for Bi2Se3, �c� and �d� is for
Bi2Te3, while �e� and �f� is for
Sb2Te3. In �a�, �c�, and �e�, the red
line represents the dispersion
along the kx direction while the
blue line is for the ky direction.
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�0�m� = � a�e�1z − e�2z��+, B0/M1 � 0

c�e−�1z − e−�2z��−, B0/M1 � 0.
� �31�

We emphasize here that the sign change of B0 /M1 will
change the spin basis of the surface states, which will be the
key point to determine the helicity of the Dirac Hamiltonian
for the topological surface states. Another important quantity
of the surface states is the decaying length, which can be
defined as lc=max� 1

�R��1,2�� �, given by

lc =�
R�B0 + �4M0M1 + B0

2

2M0
� , B0 � 0, M1 � 0

R�B0 − �4M0M1 + B0
2

2M0
� , B0 � 0, M1 � 0

R�−
B0 + �4M0M1 + B0

2

2M0
� , B0 � 0, M1 � 0

R�−
B0 − �4M0M1 + B0

2

2M0
� , B0 � 0, M1 � 0,

�
�32�

where R takes the real part.
In the above, we take a simple tight-binding model to

show the existence condition and the form of the wave func-
tion for the surface states, which can help us to understand
the underlying physics qualitatively, but not quantitatively. In
the realistic materials, the detailed form of �0 will depend on
material details, such as the boundary condition or the de-
tailed parameters; however the form of the wave function
�26� remains valid. Therefore in the following, we just sim-
ply treat �0 with some parameters. In the subspace �
= ��↑ ,�↓�, we find that

����1��� = 	1�x, ����2��� = 	1�y ,

����3��� = 	1�z, ����4��� = 0,

����5��� = 	3, �33�

with 	1���0��1��0� and 	3���0��3��0�. With these expres-
sions, the effective Hamiltonian for the surface states � is
given by1

Hsur = C̃0 + C̃2k�
2 + Ã��xky − �ykx� + R̃�k+

3 + k−
3��z

= �C0 + 	3M0� + �C2 + 	3M2�k�
2 + A0	1��xky − �ykx�

+
R1	1

2
�k+

3 + k−
3��z, �34�

with k
=kx
 iky =k�e
i�. The k3 terms have also been found
in Ref. 35. In the following numerical calculation, the coef-
ficient 	1 and 	3 are treated as two fitting parameters to the

experiment, given by 	1=
Ãexp

A0
=0.99 and 	3=

C̃exp−C0

M0
=−0.15,

where Ãexp=3.29 eV Å comes from the Fermi velocity of the

surfaces states and C̃exp=0.035 eV comes from the position
of the surface Dirac points.10 Moreover we need to check the
spin operators in this system. Again we use the wave func-
tion from ab initio calculations and project the spin operator

into the subspace spanned by the four basis states. After we
obtain the spin operators for our model Hamiltonian, we can
use the eigenwave function �26� to project the spin operator
onto the surface states subspace. Finally we find that
���Sx���=Sx0�x, ���Sy���=Sy0�y, and ���Sz���=Sz0�z
with Sx�y,z�0 to be some constants. This indicates that � ma-
trix in our model Hamiltonian �34� is proportional to the real
spin.

The derivation of the surface Hamiltonian �34� is the cen-
tral result of this section. In the limit k→0, the linear term in
Hamiltonian �34� will be dominant, then the surface states
show the linear dispersion with helical spin texture, which
has the opposite direction for the conduction and valence
band, as shown in Fig. 5�a�. Such type of spin texture is
similar to one of the Fermi surfaces in the usual 2D electron
gas with Rashba SOC,40,43 which can be simply understood
from the fact that the inversion symmetry is broken near the
surface. The helical spin texture has also been calculated by
ab initio methods44 and already observed in the pioneering
spin-resolved ARPES measurement.18 From Eq. �34�, the he-
licity of the spin texture is determined by the sign of the
coefficient Ã=A0	1, where 	1���0��1��0� is related to the
spin basis of the surface states �31�. Therefore the helicity is
determined by the relative sign of A0 and B0 /M1. Further-
more, due to the inversion condition M1M0�0, the sign of
M1 is already determined by the gap M0. Consequently,
within our model Hamiltonian the helicity of the spin texture
is given by the relative sign of the coefficients of two types
of linear terms, A0 and B0.

To further explore the origin of the helicity of the spin
texture in the atomic levels, we relate the coefficients A0 and
B0 to the atomic SOC by using expressions �7�–�10� as

A0 =
�

2m0
	P1−

+,
1

2

p+
P2+

−,−
1

2


=
�

2m0
��u−

P1+
v+

P2−
�*�P1+,pz�p+�P2−,p−�

+ �v−
P1+

u+
P2−

�*�P1+,p+�p+�P2−,pz�� , �35�

kx

kykx
ky

E

(a) (b)

Topological insulators
x

y

z

FIG. 5. �Color online� �a� Spin texture of the surface states near
the � point. For the conduction band, the helicity is left handed
while for the valence band, it is right handed. �b� Spin texture of the
conduction band of the surface states in momentum space. The
arrow represents the x-y planar spin polarization while the color
indicates the z component of the spin polarization. Here red is for
spin up while blue is for spin down. The black line gives the con-
stant energy contours.
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B0 =
�

m0
�P1z

+,pz�pz�P2−,pz�

=
�

m0
��u−

P1+
�*u+

P2−
�P1+,pz�pz�p2−,pz�

+ �v−
P1+

�*v+
P2−

�P1+,p+�pz�P2−,p+�� . �36�

Here �� ,	� ��= P1+, P2− and 	= px , py , pz� are the atomic
orbitals without any SOC and all the dependence on SOC is
included in the coefficients u� and v�. From Eq. �12�, we
find that for u�1v�2 it is proportional to ��1

�or ��2
�, which

indicates that A0 depends on the sign of the atomic SOC,
while it is only possible for �u�1�*u�2 and �v�1�*v�2 to be
independent of ��1,2

or be proportional to ��1
��2

, thus the
sign of B0 will not depend on the atomic SOC. Finally, we
conclude that the helicity of the spin texture is originally
related to the atomic SOC.

In the above, we have shown how the linear term deter-
mines the spin texture of the surface states, which can also be
affected by the quadratic and cubic terms in the effective
Hamiltonian �34�. We solve the eigenvalue problem of the
whole effective Hamiltonian and obtain the eigenenergy and
eigenstates as

E
 = C̃0 + C̃2k�
2 
 �Ã2k�

2 + 4R̃2k6 cos2 3� , �37�

�
 =
1

�N
� Ã�ky + ikx�

d
 − R̃�k+
3 + k−

3�
� , �38�

with d
= 
�Ã2k�
2+4R̃2k6 cos2 3� and N= Ã2k2

+ ��Ã2k2+4R̃2k6 cos2 3�−2R̃k3 cos 3��2. Consequently the
spin polarization in k space is given by

��+��x��+� =
2Ãky

N
�d+ − 2R̃k3 cos 3�� , �39�

��+��y��+� = −
2Ãkx

N
�d+ − 2R̃k3 cos 3�� , �40�

��+��z��+� =
4R̃k3 cos 3�

N
�d+ − 2R̃k3 cos 3�� , �41�

which is plotted in Fig. 5�b�. In the limit k→0, the spin
polarization almost lies in the xy plane, which is due to the
linear term and has been discussed in the above. When k is
increased, the k-cubic term comes into play, which will not
only induce the hexagonal warping of the constant energy
contours35 but also yield z direction spin polarization, similar
to the situation in BixSb1−x studied by ab initio
calculations.45

VI. MAGNETIC FIELD AND LANDAU LEVEL

In this section, we study the Landau level problem for
both the bulk states and the surface states, which is important
for predicting or understanding many properties of the sys-

tem in a magnetic field, such as the Shubnikov–de Haas os-
cillation, surface quantum Hall effect and magneto-optics. In
this regards, our model Hamiltonian has a unique advantage
because the magnetic field effect cannot be incorporated in
ab initio calculations. For a realistic finite sample, the bulk
Landau levels will always coexist with the surface Landau
levels; thus both the two types of Landau levels need to be
taken into account. For simplicity, we solve the bulk Landau
levels for an infinite sample and the surface Landau level for
the semi-infinite sample. The mixing between bulk and sur-
face Landau levels is neglected here.

For bulk states, there are two types of contribution from
the magnetic field, the orbital effect and the Zeeman effect.
The orbital effect can be included by Peierls substitution46

k→�=k+ e
�A with A= �0,Bzx ,0� for magnetic field along

the z direction. We introduce the annihilation and creation
operators a=

lc
�2

�− and a†=
lc
�2

�+ with lc=� �

eBz
for the har-

monic oscillator function �n. a and a† satisfy a�N=�N�N−1,
a†�N=�N+1�N+1, and �a ,a†�=1. With the operators a and
a†, the Hamiltonian �19� is written as

Ĥ0B = �̃ +�
M̃ B0kz 0 A0

�2

lc
a

B0kz − M̃ A0

�2

lc
a 0

0 A0

�2

lc
a† M̃ − B0kz

A0

�2

lc
a† 0 − B0kz − M̃

� ,

�42�

where �̃�kz ,a†a�=C0+C1kz
2+

2C2

lc
2 �a†a+ 1

2 � and M̃�kz ,a†a�
=M0+M1kz

2+
2M2

lc
2 �a†a+ 1

2 �. The k3 term, which breaks the in-
plane rotation symmetry, is neglected here; therefore the
wave function should have the form of �N
= �f1

N�N−1 , f2
N�N−1 , f3

N�N , f4
N�N�T. With this wave function an-

satz, the Hamiltonian is transformed to

Ĥ0B�kz,N� =�
M̃N−1

+ B0kz 0 A0

�2N

lc

B0kz M̃N−1
− A0

�2N

lc

0

0 A0

�2N

lc
M̃N

+ − B0kz

A0

�2N

lc

0 − B0kz − M̃N
−

� ,

�43�

with M̃N
+ = �̃�kz ,N�+M̃�kz ,N� and M̃N

− = �̃�kz ,N�−M̃�kz ,N�.
To consider the Zeeman splitting, we need to further cal-

culate the effective g factor.40,47 The effective Zeeman type
coupling can also be written down for our model Hamil-
tonian by symmetry principles. By a quick inspection of
Table III, we find that the following terms:
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ĤZ = g̃z1�12Bz + g̃z2�34Bz + g̃xy1��23 �31�

� cos �1 sin �1

− sin �1 cos �1
��Bx

By
� + g̃xy2��14 �24�

� cos �2 sin �2

− sin �2 cos �2
��Bx

By
� �44�

are possible couplings to the magnetic field. Again �1 and �2
are phase factors which need to be determined from other
methods, and here we take �1=�2=0 to coincide with the
results from the k ·p method and explicitly Eq. �44� can be
written as

ĤZ =
�B

2 �
g1zBz 0 g1pB− 0

0 g2zBz 0 g2pB−

g1pB+ 0 − g1zBz 0

0 g2pB+ 0 − g2zBz

� , �45�

with �B= e�
2m0

, and g̃xy1+ g̃xy2=
�B

2 g1p, g̃xy1− g̃xy2=
�B

2 g2p, g̃z1

+ g̃z2=
�B

2 g1z, and g̃z1− g̃z2=
�B

2 g2z. This model Hamiltonian
can also be derived from k ·p theory and the parameters g1z,
g2z, g1p, and g2p can be related to the matrix elements of the
momentum operator p in the k ·p theory, with full details
given in Appendix C. Now our total Hamiltonian for the bulk

states under the z-direction magnetic field is given by ĤB

= Ĥ0B+ ĤZ, which can be solved numerically to obtain the
Landau level EN,�

bulk�B ,kz� with Landau level index N and band
index � under the z-direction magnetic field.

A similar procedure can be applied to the surface effective
Hamiltonian �34�. With the wave function ansatz �sur,N
= �g1

N�N−1 ,g2
N�N�T, the surface Hamiltonian is changed to

Ĥsur,B0�N� = C̃0 +
2NeBz

�
C̃2 −

C̃2eBz

�
�z −�2NeBz

�
Ã�y ,

�46�

and the Zeeman type term is given by

Ĥsur,Z =
�B

2
gsz�zBz +

�B

2
gsp��xBx + �yBy� , �47�

with
�B

2 gsz= g̃z1+ g̃z2	3 and
�B

2 gsp= g̃xy1+ g̃xy2	3. The total

Hamiltonian for the surface states yields Ĥsur,B= Ĥsur,B0

+ Ĥsur,Z and correspondingly the Landau level in z-direction
magnetic field Bz is solved as

Es
sur�N� = C̃0 +

2NeBz

�
C̃2

+ s��−
C̃2eBz

�
+

�B

2
gszBz�2

+
2NeBz

�
Ã2,

�48�

with s=
 for N=1,2 , . . . and

Esur�0� = C̃0 +
eBz

�
C̃2 −

�B

2
gszBz �49�

for the zero mode N=0. Here we note that due to the exis-

tence of the quadratic term C̃2k�
2, the square-root dependence

of the energy level versus magnetic field is only an approxi-
mation applicable for low Landau levels and low magnetic
field. For high magnetic field, it will be a combination of the
linear contribution and square root contribution. As shown in
Fig. 6, the energy of the Landau levels is plotted as a func-
tion of sgn�N��NBz and the nonlinear behavior will appear
for large �NBz.

In Fig. 7�b�, the Landau levels for both bulk and surface
states are plotted as a function of magnetic field. Here we
emphasize that for the bulk states, the Landau levels are
plotted for kz=0 �red line in Fig. 7�b��. The dispersion along
the z direction is also shown in Fig. 7�a� for B=0 T and �c�
for B=20 T. From Fig. 7�a�, we find that the maximum of

FIG. 6. �Color online� The energies of the Landau levels versus
sgn�N��NB where N is the Landau level index and B is the mag-
netic field.
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FIG. 7. �Color online� The Landau levels in the magnetic field
for both the bulk states �red lines� and the surface states �blue lines�
are shown in �b�. Also the dispersion along the z direction at �a�
B=0 T and �c� B=20 T is plotted.
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the valence band is not located at kz=0 for small magnetic
fields, hence we plot the maximum of valence band as the
green lines in Fig. 7�b�. When the magnetic field increases,
the bulk gap also decreases by a significant amount �about
160 meV for 5 T magnetic field�, which is due to the double
hump structure for the valence-band dispersion of Bi2Se3.
Such decrease may be observed in a magneto-optical mea-
surement.

In order to compare with the STM experiment,22,23 it is
helpful to investigate the local density of states �LDOS� at
the surface. The LDOS for the surface states and the bulk
states can be obtained by.40

Dsur�E,B� = �
N,s

G
�2��

e−�E − EN,s
sur�B��2/2�2

�50�

and

Dbulk�E,B� = L0� dkz

2�
�
N,s

G
�2��

e−�E − EN,�
bulk�B,kz��

2/2�2
,

�51�

respectively, where G=
eBz

2�� = 1
2�lc

2 is the degeneracy of each
Landau level and � is the broadening. In order to compare
the bulk LDOS with the surface LDOS, we require to intro-
duce a length scale L0 which represents the detection depth
of STM. Here we simply take L0 to be the thickness of one
quintuple layer. Furthermore the surface states only exist
near k=0; thus we need to take a cutoff for the Landau level
index N. With formulas �50� and �51�, the LDOS for both
bulk and surface Landau levels is shown in Fig. 8. The bulk
LDOS shows a gap of about 0.3 eV and within the bulk gap,
only surface LDOS remains and shows clearly the Landau
levels as discrete peaks. The largest Landau gap for surface
states is between the zeroth and first Landau levels, about
50 meV, which is large enough for the observation of the
topological magnetoelectric effect.36,37

VII. MODEL HAMILTONIAN WITH EIGHT BANDS

As we have described above, our model Hamiltonian can
capture the salient topological features of the Bi2Se3 family
of materials. However, for a full quantitative fitting to first
principle calculations, we need to expand the basis set. By
inspecting carefully the k ·p matrix elements, we find that
there are strong couplings between the state �P1−

+ , 

1
2 � and

the state �P2−, �̃4,5� or �P2−
− , 


1
2 �. For example, at the

valence-band maximum kx�0.07 Å−1, we find that these
couplings can be as large as the energy gap between these
states. Therefore it is not surprising that our model Hamil-
tonian with four bands is not suitable in this regime. The
strong couplings between these states indicate that if we
want to describe this material more accurately, we need to

further include the states �P2−, �̃4,5� and �P2−
− , 


1
2 � into our

model Hamiltonian. In the basis sequence �P1−
+ , 1

2 �, �P1−
+ ,

− 1
2 �, �P2+

− , 1
2 �, �P1+

− ,− 1
2 �, �P2−, �̃4�, �P2−, �̃5�, �P2−

− , 1
2 � and

�P2−
− ,− 1

2 �, following the similar perturbation procedure, we
find that our model Hamiltonian is written as

Ĥ =
�2

2m0�
f1�k� 0

2

�
kzQ1

2

�
P1k−

2

�
Q2k+

2

�
k+P2

2

�
kzQ3

2

�
k−P3

f1�k�
2

�
k+P1

* −
2

�
kzQ1

* −
2

�
P2

*k−
2

�
Q2

*k−
2

�
P3

*k+ −
2

�
Q3

*kz

f3�k� 0 g35�k� g36�k� f37�k� − g47
* �− k�

f3�k� g36
* �− k� − g35

* �− k� g47�k� f37
* �− k�

f5�k� 0 − g68
* �− k� g58�k�

H.c. f5�k� g58
* �− k� g68�k�
f7�k� 0

f7�k�

� , �52�

FIG. 8. �Color online� The density of states as a function of
energy is plotted with B=10 T for the bulk �blue line�, surface
�green line�, and total �red line� Landau levels.
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with

f i�ij��k� = Fi�ij�kz
2 + Ki�ij�k�

2, �53�

gij�k� = Uijkzk+ + Vijk−
2 . �54�

The parameters Fij, Kij, Uij, and Vij can now also be deter-
mined by perturbation theory. In this Hamiltonian, time-
reversal symmetry is already satisfied. Furthermore, R2 rota-
tion symmetry requires that U35=U

36
* , V35=−V

36
* , U58=

−U
68
* , and V58=V

68
* . The obtained parameters are listed in

Table V and the band dispersion is found to agree well with
that of ab initio calculation, as shown in Fig 9. This demon-
strates that the eight band model is suitable to serve as a
basis for the quantitative study of the Bi2Se3 family of ma-
terials.

We would like to make some more remarks about the
eight band model. First, in our model Hamiltonian with four
bands, the leading term that breaks the in-plane full rotation
symmetry down to R3 symmetry is third order in the pertur-
bation, while in the eight band model, it is second order with
the coupling coefficients gij. These type of terms exist be-

cause the states �P2−, �̃4,5� themselves break the rotation

symmetry according to expressions �13� and �14�. Second, it
is interesting to compare the present eight band model with
the well-known Kane model for usual III-V or II-VI group
semiconductors with zinc-blend structure. In fact there is a
one-to-one correspondence between the basis of these two
models, in which �P1−

+ , 

1
2 � corresponds to the electron band

��6�, �P2+
− , 


1
2 � and �P2−,�4,5� correspond to the light hole

and heavy hole bands ��8�, respectively, and �P2−
− , 


1
2 � cor-

responds to the spin-orbit split-off band ��7�. Therefore,
from the symmetry point of view, our model here is nothing
but an extension of the Kane model to a crystal structure
with lower symmetry.

VIII. CONCLUSIONS

To summarize, based on the symmetry properties and the
k ·p perturbation theory, we systematically derived a model
Hamiltonian for the 3D TI in the Bi2Se3 class of materials.
Our model Hamiltonian captures the main low energy phys-
ics, such as the inverted band structure and topologically
protected surface states. The topological surface states have
well-defined spin texture, which can be traced back to the
sign of the atomic SOC in these materials. Furthermore, the
Landau levels of a z-direction magnetic field for both bulk
states and surface states are calculated. The gap of bulk Lan-
dau levels is shown to decrease when the magnetic field in-
creases, which may be observed with a magneto-optical
spectroscopy. Within the bulk gap, the surface Landau levels
appear as discrete peaks for the LDOS, which can be de-
tected by STM. We also analyze the quantitative limitation of
our model Hamiltonian with four bands and show that a
model Hamiltonian with eight energy bands can describe
Bi2Se3 family of materials quantitatively, which will be use-
ful in the future comparisons with experiments.

ACKNOWLEDGMENTS

We would like to thank Yulin Chen, Aahron Kapitulnik,
Zhixun Shen, and Qikun Xue for helpful discussions. This
work is supported by the Department of Energy, Office of
Basic Energy Sciences, Division of Materials Sciences and
Engineering under Contract No. DE-AC02-76SF00515 and
by the Keck Foundation. C.X.L. acknowledges financial sup-
port by the Alexander von Humboldt Foundation of Ger-
many. This work is also supported by the NSF of China, the
National Basic Research Program of China �No.
2007CB925000�, and the International Science and Technol-
ogy Cooperation Program of China �No. 2008DFB00170�.

APPENDIX A: SYMMETRY PROPERTY OF GROUP
D3d

5

As described in the text, the group D3d
5 is generated by a

threefold rotation operator R3, a twofold rotation operator R2,
and an inversion operator P. It has six classes and corre-

spondingly six irreducible representations, �̃1

, �̃2


 and �̃3



with the upper index 
 denoting the parity of the represen-

tation. Here we use �̃ to denote the representation at � point

TABLE V. The summary of the parameters in the eight band
effective model.

Bi2Se3 Bi2Te3 Sb2Te3

P1 �eV Å� 3.33 2.87 3.40

Q1 �eV Å� 2.26 0.30 0.84

P2 �eV Å� 2.84 2.68 3.19

Q2 �eV Å� 2.84 2.68 3.19

P3 �eV Å� −2.62 −1.94 −2.46

Q3 �eV Å� 2.48 1.23 2.11

F1 �eV Å2� 3.73 7.16 3.82

K1 �eV Å2� 6.52 3.72 2.49

F3 �eV Å2� −1.12 3.76 −32.03

K3 �eV Å2� −14.0 −7.70 −59.28

F5 �eV Å2� 1.50 −0.62 −2.26

K5 �eV Å2� −3.11 −7.17 −13.00

F7 �eV Å2� 2.71 3.77 5.04

K7 �eV Å2� −5.08 22.27 2.40

U35=U
36
* �eV Å2� −2.31–7.45i −2.21–9.85i −11.31–46.00i

V35=−V
36
* �eV Å2� −1.05–5.98i −2.43–3.53i −4.50–22.80i

F37 �eV Å2� 2.47 4.39 16.96

K37 �eV Å2� −8.52 −6.50 −24.17

U47 �eV Å2� −7.86 −4.29 −45.46

V47 �eV Å2� −8.95i −0.83i −17.64i

U58=−U
68
* �eV Å2� −2.31–2.57i −0.24–3.69i −2.01–3.98i

V58=V
68
* �eV Å2� −0.64–4.29i −0.85–6.64i 1.28−9.02i

E1 �eV� −0.29 −0.48 −0.22

E3 �eV� 0.28 0.12 0.22

E5 �eV� −0.57 −0.63 −0.88

E7 �eV� −0.98 −1.18 −1.51
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in the BZ to avoid confusion with the Dirac � matrices. The
character table of D3d

5 is given in Table I.39

After taking into account the spin, the C=2� rotation in-
duces a minus sign for the spin part so that the number of
elements in the group is doubled, which is the so-called
double group. For D3d

5 , the classes and irreducible represen-
tations of the double group are also doubled. The character
table for the double group of D3d

5 is given in Table II.39

When constructing the double group, it is useful to con-

sider the decomposition of the direct product of �̃1,2,3

 and

spinor representation �̃6, which is given by

�̃3



� �̃6
+ = �̃4


 + �̃5

 + �̃6


, �A1�

�̃1



� �̃6
+ = �̃6


, �A2�

�̃2



� �̃6
+ = �̃6


. �A3�

Furthermore when considering the matrix elements of k ·p
theory, the following direct products will be helpful:

��̃6

�* � �̃6


 = �̃1
+ + �̃2

+ + �̃3
+, �A4�

��̃6
+�* � �̃6

− = �̃1
− + �̃2

− + �̃3
−, �A5�

��̃6
+�* � �̃4


 = �̃3

, �A6�

��̃6
−�* � �̃4


 = �̃3
�, �A7�

��̃6
+�* � �̃5


 = �̃3

, �A8�

��̃6
−�* � �̃5


 = �̃3
�, �A9�

��̃4�5�
+ �* � �̃4�5�

− = �̃1
−, �A10�
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FIG. 9. �Color online� The en-
ergy dispersion obtained from the
model Hamiltonian with eight
bands �solid line� is compared
with that from ab initio calculation
�dashed line� for �a�, �c�, and �e� kx

and ky directions and �b�, �d�, and
�f� kz direction. Here �a� and �b� is
for Bi2Se3, �c� and �d� is for
Bi2Te3, while �e� and �f� is for
Sb2Te3. In �a�, �c�, and �e�, the red
line represents the dispersion
along the kx direction while the
blue line is for the ky direction.
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��̃4�5�
+ �* � �̃5�4�

− = �̃2
−. �A11�

APPENDIX B: � MATRIX

The five Dirac � matrices can be defined as

�1 = �1 � �1, �2 = �2 � �1, �3 = �3 � �1,

�4 = 1 � �2, �5 = 1 � �3, �B1�

which satisfies Clifford algebra ��a ,�b�=2�ab. The other ten
� matrices are given by �ab= ��a ,�b� /2i. Explicitly, �ab is
given by

�ij = ��i � �1,� j � �1�/2i = �ijk�k � 1, �B2�

�i4 = ��i � �1,1 � �2�/2i = �i � �3, �B3�

�i5 = ��i � �1,1 � �3�/2i = − �i � �2, �B4�

�45 = �1 � �2,1 � �3�/2i = 1 � �1, �B5�

where i , j=1,2 ,3. Now let us check the properties of the
fifteen � matrices under the time reversal T and inversion P.
We assume the � matrices are written in the basis �P1−

+ , 1
2 �,

�P2+
− , 1

2 �, �P1−
+ ,− 1

2 �, and �P2+
− ,− 1

2 �, then the transformation
matrix of the symmetry operation has been obtained in Sec.
III. With these transformation matrices, we have

T�iT
−1 = P�iP

−1 = − �i, i = 1,2,3,4, �B6�

T�5T−1 = P�5P−1 = �5. �B7�

In fact P operator is exactly �5 here,

T�ijT
−1 = − P�ijP

−1 = − �ij , �B8�

T�i4T−1 = − P�i4P−1 = − �i4, �B9�

T�i5T−1 = − P�i5P−1 = �i5, �B10�

T�45T
−1 = − P�45P−1 = �45, �B11�

where i , j=1,2 ,3.
Next let us consider R2,

R2�1,4R2
−1 = − �1,4, �B12�

R2�2,3,5R2
−1 = �2,3,5 �B13�

R2�12,31,24,34,15,45R2
−1 = − �12,31,24,34,15,45, �B14�

R2�23,14,25,35R2
−1 = �23,14,25,35. �B15�

Finally let us talk about the three fold rotation symmetry.
Under the rotation operation Rz���, the � matrices are trans-
formed as �����=ei�/2��e−i�/2�, then

d�����
d�

=
i

2
��,������ . �B16�

Therefore, the transformation properties of � matrices under
the rotation operation are determined by the commutation

relation �� ,��. The commutation relations for � matrices are
listed as follows:

��,�1� = 2i�2, ��,�2� = − 2i�1,

��,�3� = ��,�4� = ��,�5� = 0, �B17�

��,�12� = 0, ��,�34� = 0, �B18�

��,�31� = − 2i�23, ��,�23� = 2i�31, �B19�

��,�14� = 2i�24, ��,�24� = − 2i�14, �B20�

��,�15� = 2i�25, ��,�25� = − 2i�15, �B21�

��,�35� = 0, ��,�45� = 0. �B22�

With the above commutation relations, we can easily solve
Eq. �B16� and find that

�1���� = �1 cos � − �2 sin � ,

�2���� = �1 sin � + �2 cos � , �B23�

�3���� = �3, �4���� = �4, �B24�

�23� ��� = �23 cos � − �31 sin � ,

�31� ��� = �31 cos � + �23 sin �

�14� ��� = �14 cos � − �24 sin � , �B25�

�24� ��� = �14 sin � + �24 cos � , �B26�

�15� ��� = �15 cos � − �25 sin � ,

�25� ��� = �15 sin � + �25 cos � ,

�5���� = �5, �34� = �34, �12� = �12, �B27�

�35� = �35, �45� = �45. �B28�

The above results indicate that under the rotation R3�3,4,5
and �12,34,35,45 behave as scalars �or pseudoscalars�, while the
three pairs of operators ��23,�31�, ��14,�24�, and ��15,�25�
behave as vectors. The corresponding representation for each
� matrix is given in table III.

APPENDIX C: PARAMETERS IN k·p THEORY

In this appendix, we show the detailed results from k ·p
theory. First let us consider the constraint for the matrix el-
ements of momentum from the D3d

5 symmetry. As described
above, the eigenstates can be denoted by ��
 ,	� with �
= P1
 , P2
 and 	= 


1
2 , 


3
2 . The states �� , 
1 /2� belong

to �̃6

 representation. For �� , 
3 /2�, as described above, we

need to recombine these two states as
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��
,�̃4� =
1
�2

���
,3/2� + ��
,− 3/2�� , �C1�

��
,�̃5� =
1
�2

���
,3/2� − ��
,− 3/2�� , �C2�

which belong to �̃4 and �̃5 representations, respectively. Ex-
pressions �A4�–�A11� give the decomposition of the direct
product of these states. The momentum px, py belongs to the

�̃3
− representation, while pz belongs to the �̃2

− representation;
therefore we require that the decomposition of the direct

product of the eigenstates also include �̃3
− and �̃2

− to obtain
nonzero matrix elements. For example, the direct product of

�̃6

 and �̃4,5


 does not contain �̃2, which indicates that the

matrix element ��1 , 
1 /2�pz��2 , �̃4,5� is always zero.
The symmetry operation can further help us to obtain the

relation between different matrix elements of the momentum.
For example, due to the R3 rotation symmetry, we have

	�1
+,

1

2

px
�2

−,−
1

2
 = 	�1

+,
1

2

R3

†R3pxR3
†R3
�2

−,−
1

2


= e−i�2�/3�	�1
+,

1

2

�px cos

2�

3

− py sin
2�

3
�
�2

−,−
1

2


→ 	�1
+,

1

2

px
�2

−,−
1

2


= i	�1
+,

1

2

py
�2

−,−
1

2
 . �C3�

Finally we can define the independent components of the
matrix elements as follows:

	�1
+,

1

2

px
�2

−,−
1

2
 = 	�1

+,−
1

2

px
�2

−,
1

2


= i	�1
+,

1

2

py
�2

−,−
1

2


= − i	�1
+,−

1

2

py
�2

−,
1

2
 = P�1

+,�2
−,

�C4�

	�1
+,

1

2

pz
�−,

1

2
 = − 	�1

+,−
1

2

pz
�−,−

1

2
 = Q�1

+,�2
−,

�C5�

	�1

,

1

2

px��2

�,�̃4� = − i	�1

,−

1

2

px��2

�,�̃4�

= − i	�1

,

1

2

py��2

�,�̃4�

= 	�1

,−

1

2

py��2

�,�̃4� = M�1

,�2

�,

�C6�

	�1

,

1

2

px��2

�,�̃5� = i	�1

,−

1

2

px��2

�,�̃5�

= − i	�1

,
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2

py��2
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= − 	�1

,−

1

2

py��2

�,�̃5� = N�1

,�2
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�C7�

��1
+,�̃4�pz��−,�̃4� = R�1

+,�2
−, �C8�

��1
+,�̃5�pz��−,�̃5� = S�1

+,�2
−. �C9�

Here it is more convenient to use p
= px
 ipy, which leads
to

	�1
+,

1

2

p+
�2

−,−
1

2
 = 	�1

+,−
1

2

p−
�2

−,
1

2
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�C13�
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�C15�

Time-reversal symmetry indicates that P�1
+,�2

−, Q�1
+,�2

− can
be chosen to be real �P�1

+,�2
− = P

�1
+,�2

−
* , Q�1

+,�2
− =Q

�1
+,�2

−
* � while

M�1

,�2

� = iN
�1


,�2
�

* and R�1
+,�2

− =−S
�1

+,�2
−

* . Since the matrix ele-
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ment between �P1−
+ , 


1
2 � and �P2+

− , 

1
2 � is quite important,

we denote

	P1−
+,

1

2

px
P2+

−,−
1

2
 = 	P1−

+,−
1

2

px
P2+
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1

2
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�C16�
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1

2
 = − 	P1−

+,−
1

2

pz
P2+

−,−
1

2
 = Q0.

�C17�

Now we consider perturbation theory. The degenerate per-
turbation formalism is given by

Hmm�
�0� = Em�mm�, �C18�

Hmm�
�1� = Hmm�

� , �C19�

Hmm�
�2� =

1

2�
l

Hml� Hlm�
� � 1

Em − El
+

1

Em� − El
� , �C20�

Hmm�
�3� = −

1

2 �
l,m�

� Hml� Hlm�
� Hm�m�

�

�Em� − El��Em� − El�

+
Hmm�

� Hm�l
� Hlm�

�

�Em − El��Em� − El�
�

+
1

2�
l,l�

Hml� Hll�
� Hl�m�

� � 1

�Em − El��Em − El��

+
1

�Em� − El��Em� − El��
� . �C21�

Here m and m� are taken from �P1−
+ ,1 /2�= �1�, �P2+

− ,1 /2�
= �2�, �P1−

+ ,−1 /2�= �3� and �P2+
− ,−1 /2�= �4� with the energy

E1=E3 and E2=E4 and E1�E2. l is taken from the other
bands except for these four bands. The expression from the
perturbative calculation of our model Hamiltonian with four
bands is given as follows and the values of the parameters
are listed in Table IV. For our model Hamiltonian with eight
bands, the perturbation procedure is the same as our model
Hamiltonian with four bands and here we only list the values
of the parameters in Table V.

C0 + M0 = E1, �C22�

C0 − M0 = E2, �C23�

C1 + M1 =
�2

2m0
+

�2

m0
2�

�−

�QP1+,�−�2

E1 − E�−,1/2
, �C24�

C2 + M2 =
�2

2m0
+

�2

m0
2�

�−
� �PP1+,�−�2

E1 − E�−,−1/2
+

�MP1+,�−�2

E1 − E�−,�4

+
�NP1+,�−�2

E1 − E�−,�5

� , �C25�

C1 − M1 =
�2

2m0
+

�2

m0
2�

�−

�Q�+,P2−�2

E1 − E�+,1/2
, �C26�

C2 − M2 =
�2k2

2m0
+

�2

m0
2�

�−
� �P�+,P2−�2

E1 − E�+,−1/2
+

�M�+,P2−�2

E1 − E�+,�4

+
�N�+,P2−�2

E1 − E�+,�5

� , �C27�

A0 =
�

m0
P0, �C28�

B0 =
�

m0
Q0. �C29�

For R1 and R2 term we have

R1 − R2 =
�3

m0
3��

�

�MP1+,�−�2PP1+,P2−

�EP2− − E�−��EP1+ − E�−�

− �
�1

−,�2
+

MP1+�1
−M

�2
+�1

−
* P�2

+P2−

� 1

�EP1+ − E�1
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+�

+
1

�EP2− − E�1
−��EP2− − E�2

+��� , �C30�

R1 + R2 =
�3

m0
3�− �

�

PP1+,P2−�MP2−,�−�2

�EP2− − E�+��EP1+ − E�+�

− �
�1
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PP1+�1
−M�1

−�2
+M
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� 1

�EP1+ − E�1
−��EP1+ − E�2

+�

+
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�EP2− − E�1
−��EP2− − E�2

+��� . �C31�

Now we study the effect of a magnetic field. Under a
magnetic field, there are two different kinds of contribution.
One is the orbital term, which induces the Landau levels and
has been considered in Sec. VI. The other one is the Zeeman
type term, which is described by an effective g factor. In the
following we will discuss the effective g factor in detail.
There are two kinds of contributions to the effective g factor.
One comes from the atomic g factor, which can be estimated
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from the ab initio calculation. In an atom, the electron spin
and orbital angular momentum couples to the magnetic field

as ĤZee=
�B

� �glL+gsS� ·B=
�B

� g0J ·B, where J=S+L is the to-
tal angular momentum and g0 is so called Landé g-factor.
The wave functions for the basis of our model Hamiltonian
have been calculated from ab initio calculation, which can be
projected onto the atomic orbitals. Since for each atomic
orbitals, the g factor is simply given by g0=1
+ J�J+1�−L�L+1�+S�S+1�

2J�J+1� , the effective g0 can be easily calculated,
and is found to be g0�1.2. Another contribution to the ef-
fective g factor originates from the second order perturba-
tion, and is related to the correction to the effective mass
term. The relation between the effective mass and effective g
factor in the ordinary semiconductors is known as the Roth’s
formula.47 Here the second-order correction to the g factor is
given by

g1z
�2� =

4

m0
�

�−,	

� �PP1+,�−�2

E1 − E�−,−1/2
−

�MP1+,�−�2

E1 − E�−,�4

−
�NP1+,�−�2

E1 − E�−,�5

� ,

�C32�

g1p
�2� =

4

m0
�
�−

QP1+,�−P
P1+,�−
*

EP1+ − E�−,1/2
, �C33�

g2z
�2� =

4

m0
�

�+,	

� �P�+,P2−�2

E2 − E�+,−1/2
−

�M�+,P2−�2

E2 − E�+,�4

−
�N�+,P2−�2

E2 − E�+,�5

� ,

�C34�

g2p
�2� =

4

m0
�
�+

Q
�+,P2−
* P�+,P2−

EP2− − E�+
. �C35�

where g1z�p� and g2z�p� are defined in Eq. �45�. Therefore our
effective g factor is the summation of the above two different
contributions,

g	 = g0 + g	
�2�, 	 = 1z,2z,1p,2p , �C36�

and the values of the effective g factor are given in Table IV.
From Table IV, we find that for the �P1−

+ , 

1
2 � band, there is

a strong anisotropy which comes from the large contribution
of the second order perturbative correction of the states
�P2−, 


3
2 � and �P2−

− , 

1
2 �.
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